A modified orthogonal collocation method for reaction diffusion problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solutions of nonlinear Fisher's reaction–diffusion equation with modified cubic B-spline collocation method

In this paper, a numerical method is proposed to approximate the numeric solutions of nonlinear Fisher's reaction– diffusion equation with modified cubic B-spline collocation method. The method is based on collocation of modified cubic B-splines over finite elements, so we have continuity of the dependent variable and its first two derivatives throughout the solution range. We apply modified cu...

متن کامل

SPLINE COLLOCATION METHOD FOR SOLVING BOUNDARY VALUE PROBLEMS

The spline collocation method is used to approximate solutions of boundary value problems. The convergence analysis is given and the method is shown to have second-order convergence. A numerical illustration is given to show the pertinent features of the technique.  

متن کامل

Orthogonal Spline Collocation Laplace-modified and Alternating-direction Methods for Parabolic Problems on Rectangles

A complete stability and convergence analysis is given for twoand three-level, piecewise Hermite bicubic orthogonal spline collocation, Laplacemodified and alternating-direction schemes for the approximate solution of linear parabolic problems on rectangles. It is shown that the schemes are unconditionally stable and of optimal-order accuracy in space and time.

متن کامل

A Preconditioned Conjugate Gradient Method for Nonselfadjoint or Indefinite Orthogonal Spline Collocation Problems

We study the computation of the orthogonal spline collocation solution of a linear Dirichlet boundary value problem with a nonselfadjoint or an indefinite operator of the form Lu = ∑ aij(x)uxixj + ∑ bi(x)uxi + c(x)u. We apply a preconditioned conjugate gradient method to the normal system of collocation equations with a preconditioner associated with a separable operator, and prove that the res...

متن کامل

An ADI Crank-Nicolson Orthogonal Spline Collocation Method for the Two-Dimensional Fractional Diffusion-Wave Equation

A new method is formulated and analyzed for the approximate solution of a twodimensional time-fractional diffusion-wave equation. In this method, orthogonal spline collocation is used for the spatial discretization and, for the time-stepping, a novel alternating direction implicit (ADI) method based on the Crank-Nicolson method combined with the L1-approximation of the time Caputo derivative of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Brazilian Journal of Chemical Engineering

سال: 2014

ISSN: 0104-6632

DOI: 10.1590/0104-6632.20140314s00002692